Feature extraction and selection
Dick de Ridder and Cor Veenman
ASCI A1 - Advanced Pattern Recognition 2008

Feature space
- A \(p \)-dimensional space,
 - in which each dimension is a feature
 - containing \(N \) (labelled) samples (objects)

Questions for today:
- What can we do in this feature space?
- Why and how should we lower the number of features?

Density estimation
- Density estimation is hardest underlying problem
 - Probability density function, \(p(x) \); per class, \(p(x | \omega_i) \)

What is the probability of an object of class A? And an object of class B?

Density estimation (2)
- Approaches:
 - Histograms: need a lot of data
 - Simple models: e.g. a Gaussian
 - Mixture models: e.g. mixtures of Gaussians
 - Non-parametric: e.g. Parzen estimation

Simplest model: Gaussian
\[
p(x) = \frac{1}{\sqrt{2\pi^d \det(G)}} \exp \left(-\frac{1}{2} (x - \mu)^T G^{-1} (x - \mu) \right)
\]

\[G = \begin{bmatrix}
\text{cov}(x_1,x_1) & \text{cov}(x_1,x_2) & \cdots & \text{cov}(x_1,x_d) \\
\text{cov}(x_2,x_1) & \text{cov}(x_2,x_2) & \cdots & \text{cov}(x_2,x_d) \\
\vdots & \vdots & \ddots & \vdots \\
\text{cov}(x_d,x_1) & \text{cov}(x_d,x_2) & \cdots & \text{cov}(x_d,x_d)
\end{bmatrix}
\]
- Rule-of-thumb: need 10 times as many samples as features to estimate parameters
- For example, for 40 \(\times \) 40 pixel face recognition: \(10 \times (1600 + \frac{1}{2} \times 1600 \times 1599) = 12.8 \times 10^6 \) samples
Curse of dimensionality

- Problem: too few samples in too many dimensions (the curse of dimensionality)

- For starters: in high-dimensional spaces, our 2D/3D intuition does not work anymore...

High-dimensional spaces

- Example: neighbourhood capturing 10% of uniformly distributed data in hypercube

\[\mathbb{R}^1 \] sides of 0.1\(r \), e.g. in \(\mathbb{R}^2 \): sides of 0.89... not a “small block” anymore!

High-dimensional spaces (2)

- Example: all points are boundary points

 - 1000 \(N(0,1) \) samples in \(\mathbb{R}^2 \): 1% on convex hull
 - 1000 \(N(0,1) \) samples in \(\mathbb{R}^{20} \): 95% on convex hull

High-dimensional spaces (3)

- Example: points tend to have equal distances

 - Distance to mean:
 \[
 \frac{\text{std}(d^2)}{\text{mean}(d^2)}
 \]

 - Distance between samples: squared Euclidean distances of points in \(\mathbb{R}^{1024} \sim N(1024,32\sqrt{2}) \), so distances are all equal within 10%

High-dimensional spaces (4)

- For classification purposes, this means that for increasing dimensionality \(p \):
 - local, distance-based methods suffer most
 e.g. error for NN-methods goes up exponentially with \(p \)
 - global, more restricted models suffer less
 e.g. error for linear models goes up linearly with \(p \)

 - So...
 - controlling classifier complexity is important (later...)
 - \(p \) should be kept as low as possible: dimensionality reduction

Dimensionality reduction

- Problem: too few samples in too many dimensions (the curse of dimensionality)

- Solution: drop dimensions (features)

 - Feature selection
 - Feature extraction

- Question:
 - Which dimensions can safely be dropped?
 - What is the best subset of features to keep?
Dimensionality reduction (2)

- Use of dimensionality reduction:
 1. **Fewer parameters** give faster algorithms and parameters are easier to estimate

 Note: the curse of dimensionality means that discarding information may actually improve results!
 2. **Explaining** which measurements are useful and which are not (reducing redundancy)
 3. **Visualisation** of data is a powerful tool when designing pattern recognition systems

Feature selection v extraction

- **Feature selection:** select \(d \) out of \(p \) measurements
- **Feature extraction:** map \(p \) measurements to \(u \) measurements

Feature selection v extraction (2)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cut in measurements</td>
<td>expensive</td>
</tr>
<tr>
<td></td>
<td>easy interpretation</td>
<td>often approximative</td>
</tr>
<tr>
<td>Extraction</td>
<td>cheap</td>
<td>need all measurements</td>
</tr>
<tr>
<td></td>
<td>can be nonlinear</td>
<td>criterion sub-optimal</td>
</tr>
</tbody>
</table>

Feature selection v extraction (3)

- Think of selection and extraction as finding a mapping \(f \) for every \(x \); for both, we need:
 - a **criterion function**, a model of what makes a good mapping e.g. error, class overlap, information loss
 - a **search algorithm**, a method of finding the mapping given the criterion e.g. pick the best single feature at each time

- Sometimes these can be combined in one algorithm; for feature extraction, they usually are

Criteria

1. The optimal criterion: the final performance of the entire system, calculated using cross-validation

 For any practical application, too expensive!

2. Approximate performance predictors:
 calculate the performance of an easy-to-use model, that gives an indication of how well a more powerful model may perform

3. General desired properties:
 decorrelation or local structure preservation, e.g. for visualisation

Feature extraction

- **Unsupervised**
 - \(\{x\} \)
 - Linear

- **Supervised**
 - \(\{x\}, \{y\} \)
 - Linear
 - Nonlinear
Linear feature extraction

- Unsupervised:
 - Principal Component Analysis (PCA)
- Supervised:
 - Canonical Correlation Analysis (CCA)
 - Partial Least Squares (PLS)
 - Linear Discriminant Analysis (LDA)

PCA is the most widely used feature extraction method

Principal component analysis

- Principal component analysis (PCA, 1901):
 - find directions in data...
 - which retain as much variation as possible
 - which make projected data uncorrelated
 - which minimise squared reconstruction error

Principal component analysis (2)

- Given a set of measurements x_1, \ldots, x_p (with zero mean, i.e. $\mu = 0$), we look for a linear combination

$$
\xi_j = \sum_{j=1}^p A_{ij} x_j
$$

- A is a matrix of coefficients, which
 - has orthonormal columns
 - maximises the variance of the ξ_j's

PCA derivation

- To find the first variable,

$$
\xi_1 = \sum_{j=1}^p A_{1j} x_j = a_1^T x
$$

choose a_1 to maximise the variance of ξ_1, with the constraint that the length of a_1 is 1:

$$
a_1^T a_1 = |a_1|^2 = 1
$$

- $\text{var}(\xi_1) = E[\xi_1^2] - E[\xi_1] E[\xi_1] = a_1^T \Sigma a_1$

where $\Sigma = \text{cov}(x_j, x_k)$

PCA derivation (2)

- Maximise $f(a_1) = \text{var}(\xi_1) = a_1^T \Sigma a_1$

subject to the constraint $c(a_1) = a_1^T a_1 - 1 = 0$

- Use Lagrange multiplier: in the optimum,

$$
\nabla f(a_1) - \nu \nabla c(a_1) = 0
$$

$$
\Sigma a_1 - \nu a_1 = 0
$$

- Remember from last week:

solutions to $(\Sigma - \lambda I) e_j = \Sigma e_j - \lambda e_j = 0$

are the eigenvectors e_j and corresponding eigenvalues λ_j, $j = 1, \ldots, p$

PCA derivation (3)

- Which eigenvector should we choose for ν?

$$
\Sigma a_1 - \nu a_1 = 0
$$

$$
\text{var}(\xi_1) - \nu \cdot 1 = 0
$$

$$
\nu = \lambda_1 = \text{largest eigenvalue}
$$

a_1 is the first principal component

a_1 is the first eigenvector

a_1 is the corresponding eigenvector

a_1 is the first principal component
PCA derivation (4)
• For the next principal component, maximise
 \[f(a_2) = \text{var}(\xi_2) = a_2^T \Sigma a_2 \]
subject to the constraints
 \[|a_2| = 1 \quad : c_1(a_2) = a_2^T a_2 - 1 = 0 \]
 \[a_2 \perp a_1 \quad : c_2(a_2) = a_2^T \Sigma a_1 = a_2^T a_1 = 0 \]
• Similar derivation shows that the second principal component is the eigenvector corresponding to the second largest eigenvalue
 • Etcetera...

Intrinsic dimensionality
• Number of dimensions “truly used by the data”
• Depends on point of view (neighbourhood size!)

PCA example (2)
• For image data, principal components can also be interpreted...
 most often occurring variations between digits

Intrinsic dimensionality
• Number of dimensions “truly used by the data”
• Depends on point of view (neighbourhood size!)

PCA derivation (6)
• PCA: for \(\xi = A^T x \), to keep \(d \) dimensions, choose
 \[A = (e_1 \ e_2 \ ... \ e_j) \]
where the \(e_i \) are eigenvectors of the covariance matrix \(\Sigma \), sorted by the accompanying eigenvalues \(\lambda_j > \lambda_j > ... \)
• To choose \(d \), inspect the retained variance, \(\sum_{j=1}^d \lambda_j \)
 or the ratio \(\sum_{j=1}^d \lambda_j / \sum_{j=1}^\infty \lambda_j \)
• Intrinsic dimensionality: \(d \) for which 90%-95% variance is retained

PCA example
• e.g. NIST digits: 2000 samples, \(p = 256 \)

PCA tips & tricks
• Derivation supposes mean of data is zero, so it should be removed: \(x' = (x - \mu) \)
• PCA is sensitive to scaling (e.g. length in cm has a much larger variance than length in m), so it’s best to standardise: \(x' = (x - \mu) / \sigma \)
PCA tips & tricks (2)

- PCA used for reconstructing data:
 \[x_r = A^T (x - \mu) \]
 since \((AA^T)^{-1} = (AA^T)^T = AA^T\)

PCA conclusions

- Principal component analysis:
 - **global** and **linear** (but can use mixtures, see later)
 - **unsupervised** (but can be performed on average
 per-class covariance matrix: \texttt{km} in PRTools)
 - needs a **lot of data**
 to estimate \(\Sigma\) well!
 - Danger:
 criterion is not necessarily related to the goal; might discard important directions

Independent component analysis (ICA)

- Model: \(\xi = Ax\)
- PCA finds vectors such that projected data is **uncorrelated**:
 \(p(x, y) = 0\)
- ICA finds vectors such that projected data is **independent**:
 \(p(f(x), g(y)) = 0\), \(\forall f(.), g(.)\)
- Related to the Blind Source Separation (BSS) problem:
 unmixing discrete (sound) sources from a number of observed linear combinations

ICA (2)

- Many different algorithms; most are iterative, optimising non-Gaussianity of projected data:
 - Central Limit Theorem: sums of i.i.d. features will approximately be Gaussian distributed...
 - ...therefore, finding a projection which is as non-Gaussian as possible will likely find a single feature

ICA (3)

- FastICA: widely used algorithm
 - Entropy: \(H(\xi) = - \int \xi \log(\xi) d\xi\)
 - Negentropy: \(J(\xi) = H(\xi_{\text{Gauss}}) - H(\xi)\)
 with \(\xi_{\text{Gauss}}\) a Gaussian r.v. with the same covariance matrix as \(\xi\)
 - Approximate negentropy: assume \(x\) zero mean and pre-whitened (by PCA, or \(x' = C^{-\frac{1}{2}}x\)):
 \[J_G(a) = [E(G(x'a)) - E(G(\nu))]^2 \]
 with \(x' \sim \mathcal{N}(0,1)\) r.v. and \(G\) a contrast function, e.g. \(G(x) = x^4\) (kurtosis!)

ICA (4)

- FastICA iteratively maximises \(J_G(a)\) and discards \(a\)
- Fixed-point:
 - \(J_G(a) = [E(G(a'x)) - E(G(\nu))]^2\)
 is optimal when \(E(G(a'x))\) optimal
 - Constrain \(|a|^2 = 1\): Lagrange multiplier
 - In optimum: \(E(xG'(a'x)) - \beta a = 0\)
- Algorithm:
 - \(a^* = E(xG'(a'x)) - E(G'(a'x)) a\)
 - \(a_{n+1} = a^n / \|a^n\|\)
ICA (5)
• On image data ICA gives more localised basis vectors than PCA; e.g. on 12×12 pixel windows, from natural scenes:

Supervised linear feature extraction
• If a desired output y (or label ω) is present for each x, supervised criteria can be used
• Three illustrations:
 • Partial Least Squares (PLS)
 • Canonical Correlation Analysis (CCA)
 • Linear Discriminant Analysis (LDA)

Partial Least Squares (PLS)
• Reconstruction:
 • {x} and {y} both assumed stochastic, treated equally
• Regression:
 • {y} depends on {x}; only {y} is assumed stochastic

PLS (2)
• Feature extraction for regression:
 • Simplest: Principal Component Regression (PCR)
 • Perform PCA: maximise \(\text{var}(a_1^T x) \)
 • Perform regression in low-dimensional space
 • Partial Least Squares (PLS):
 • Find vector \(a_1 \) for \(x \) that maximises \(\text{cov}(a_1^T x, y) \)

Canonical Correlation Analysis (CCA)
• Find basis vectors \(a_i \) for \(x \) and \(b_i \) for \(y \) such that the projections \(\hat{x} = a_i^T x \) and \(\hat{y} = b_i^T y \) are maximally correlated:

\[
\rho(\hat{x}, \hat{y}) = \frac{\mathbb{E}[\hat{x}\hat{y}]}{\sqrt{\mathbb{E}[\hat{x}^2]\mathbb{E}[\hat{y}^2]}} = \frac{\mathbb{E}[a_i^T x y^T h]}{\sqrt{\mathbb{E}[a_i^T x x^T a_i]\mathbb{E}[h y y^T h]}} = \frac{a_i^T \Sigma_{x y} h}{\sqrt{a_i^T \Sigma_x a_i + h_i^T \Sigma_h h_i}}
\]
• Constraints, algorithm like PCA

Linear discriminant analysis (LDA)
• Also known as Fisher mapping (fisherm)
• Minimise within-class scatter \(S_w = \sum_{i=1}^{C} \frac{N_i}{N} \sum (x_i - m_i)(x_i - m_i)^T \)
• Maximise between-class scatter \(S_b = \sum_{i=1}^{C} \frac{N_i}{N} (m_i - m)(m_i - m)^T \)

\[
\text{Weighted average} = S_w
\]
LDA (2)
• Find basis vector a_1 for $\{x\}$ such that in the projections, the classes are maximally separated
• Choose a_1 to maximise Fisher criterion:
 $$J_F(a_1) = \frac{a_1^T S_B a_1}{a_1^T S_W a_1}$$
• Solution: eigenanalysis on $S_W^{-1} S_B$
• LDA is equal to CCA if class labels are stored as vectors, e.g. $\omega = 1 \rightarrow y = (1 \ 0 \ ... \ 0)^T$, $\omega = 2 \rightarrow y = (0 \ 1 \ ... \ 0)^T$, etc.

LDA (3)
- Original
- Decorrelated
- Sphered (S_W^{-1})
- PCA on means (S_B)
- Restored
- Projected data

LDA (4)
- Map down to a maximum of $c-1$ dimensions (why?)
- Example: NIST digits

LDA (5)
• To avoid fitting noise, can do PCA first
• If system underdetermined ($n \leq p$), first doing PCA is required

Linear feature extraction
• General approach: find eigenvectors a and eigenvalues λ of $C^{-1} B a = \lambda a$, with...
 $$B \quad C$$
 $$\begin{pmatrix}
 \Sigma_{xx} & I \\
 \Sigma_{yx} & 0
 \end{pmatrix}$$
 $$\begin{pmatrix}
 \Sigma_{xx} & \Sigma_{yx} \\
 0 & 0
 \end{pmatrix}$$
 $$\begin{pmatrix}
 \Sigma_{xx} & \Sigma_{yx} \\
 0 & 0
 \end{pmatrix}$$
 $$S_W \quad S_B$$

Feature extraction
- Unsupervised
- Supervised
- Linear
- Nonlinear
Nonlinear feature extraction

- Large collection of possible mappings, but not all applicable to all problems
- Usually need an optimisation algorithm
- Here: only unsupervised methods

Kernel PCA (KPCA)

- Use kernel trick, like in support vector classifier
- In effect: add results of nonlinear operations on features as features, and apply standard PCA
- Example: \(K(x,y) = (x^T y + 1)^d \)
- Similarly: kernel LDA, kernel CCA, ...

Topographic mapping

- Potential problem: overfitting
- Solution: first cluster data locally ("code vectors")
- EM-type problem:
 - Cluster membership of each object
 - Manifold fit of each cluster
Principal curve (PC)

- Principal component: minimise deviation from line
- Principal curve: minimise deviation from a curve
- Need to assume a family of curves, e.g. B-splines, Bézier-curves, piecewise linear...
- Training: using expectation-maximisation (EM), alternating fitting PDFs and regression by smoothing

Self-organising map (SOM)

- Assume clusters lie on curve or grid, and fit this to data (cross between clustering and feature extraction)
- Training: iteratively, pick a random training sample and move the nearest grid point and its neighbours towards it (form of simulated annealing)

Generative Topographic Mapping

- GTM: more principled version of SOM, “mixture-of-Gaussians” + explicit mapping

Mixture of subspaces

- Mixture model:
 \[p(x) = \sum_{i=1}^{k} p(x|z_i) \pi_i \]
 \[p(x|z) = N(A z + \mu, \Psi) \]
 \[p(z) = N(0, I) \]

Autoregressive neural network

- Feedforward neural networks predicting their input
- Bottleneck layer: feature extraction
- Criterion like PCA (reconstruction error)
- Training: like standard NNs (back-propagation, ...)

Autoregressive neural network (2)

- With multiple hidden layers: nonlinear feature extraction

Embedding

- Find new representation directly, such that some properties (e.g., distances between samples) are preserved as well as possible

Isomap

- Euclidean distance not suitable for preserving topology...
 - construct neighbourhood graph, e.g., connect each object x to its k nearest neighbours
 - calculate distance D_{ij} between x_i and x_j as shortest path over neighbourhood graph
 - perform classical scaling using D

Locally linear embedding (LLE)

- Globally preserve local structure around each sample
 - **Step I**: for each sample x_i, find weights w that best reconstruct it linearly from its k neighbours, $x_{n(1)}...x_{n(k)}$
 - Minimise: $E_I(w) = \sum_{i=1}^{N} \sum_{j=1}^{k} w_j (x_i - x_{n(j)})^2$

Locally linear embedding (2)

- To calculate w for sample x_i:
 \[
 E_I^{(i)}(w) = \left| x_i - \sum_{j=1}^{k} w_j x_{n(j)} \right|^2 = \sum_{j=1}^{k} w_j^2 (x_i - x_{n(j)})^2 = w^T Q w
 \]
 with $\sum_{j=1}^{k} w_j = 1$, solution is: $w = Q^{-1} Q^{-1} Q^{-1}$

 where Q is the $k \times k$ local Gram matrix,
 \[
 Q_{ij} = (x_i - x_{n(j)})^T (x_i - x_{n(m)}) \quad \text{or} \quad Q_{ij} = \frac{1}{2} (D_{i,n(j)} + D_{i,n(m)} - D_{n(j),n(m)})
 \]
 (note: often, $Q = Q + \epsilon I$)

Locally linear embedding (3)

- Result of Step I:
 sparse $N \times N$ matrix W, with $W_{i,n(j)} = w_{i,j}^{(i)}$
Locally linear embedding (4)

- **Step II**: find a projection z_i for each sample x_i by minimising

$$
\mathcal{E}_{II}(Z) = \sum_{i=1}^{N} \left(x_i - \sum_{j=1}^{k} w_{ij} z_{(j)} \right)^2
$$

$$
= \text{tr}(Z(I - W)^T(I - W)Z) = \text{tr}(MZ^2)
$$

where Z contains the z_i as its columns

- Constraints: $\frac{1}{N} \sum_{i=1}^{N} z_i = \frac{1}{k} Z 1 = 0$ and $\frac{1}{N} ZZ^T = I$

- Rayleigh-Ritz theorem: solutions are eigenvectors of M corresponding to smallest eigenvalues

- Discard smallest eigenvalue to constrain $\frac{1}{N} \sum_{i=1}^{N} z_i = 0$

Summary

- Feature selection and extraction: useful for visualisation, necessary because of curse of dimensionality

- Feature extraction:
 - linear v nonlinear
 - supervised v unsupervised

- PCA is the most important feature extraction method